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On the Complex Resonant Frequency of
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Abstract — An analytical method is presented for calculating accurately
the complex resonant frequency of dielectric pillbox resonators. In this
method, an approximated field of the resonator is expanded into a trun-
cated series of solutions of the Helmholtz equation in the spherical
coordinates, and the boundary condition on the resonator surface is treated
in the least-squares sense. The resonant frequency and the intrinsic Q value
due to radiation loss are obtained in the form of approximation cbnverging
to the exact values. Numerical results are compared with previously
published calculations, which show that the present method is a relatively
simple and effective one.

I. INTRODUCTION

IELECTRIC PILLBOX resonators have found many

practical applications, particularly in the spectral range
from microwave to short millimeter-wave frequencies
[1]-[7]. As far as the resonant frequency is concerned, the
analyses for such a resonator have been performed by
using several approximate methods, such as a magnetic
wall model [7]-[10], a variational model [11], a dielectric
waveguide model [12], [13], and a mixed model [14]. The
method based on a magnetic wall model typically gives rise
to numerical values smaller than experimental ones by
about 10 percent, whereas the variational method of
Konishi et al. [11] shows agreement with experimental
results within 1 percent. On the other hand, Itoh ez al. [12]
have shown that the dielectric waveguide model agrees
closely with Konishi’s method, and also Garault ez al. [14]
have shown that a mixture of the magnetic wall and
dielectric waveguide models can predict the resonant
frequency to within less than 1-percent error. However,
these approximate methods give no information about the
radiation loss which always exists in dielectric resonators
of the open type. It is expected that this kind of resonator
will increase in use, particularly in the millimeter-wave
region. Hence, accurate information about the intrinsic Q
value due to radiation loss as well as that about the
resonant frequency becomes important.

One effective approach to solve this problem has been
presented by Van Bladel et al. [15]-[17]. They have analyzed
an open dielectric resonator by the asymptotic expansion
method in which the fields are expanded in powers of the
reciprocal of refractive index \/Z . They performed calcula-

tions by considering only the first-order correction in 1/ \/e‘, .
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Fig. 1. Dielectric pillbox resonator and spherical coordinate system.

In this case, their method can avoid repeating calculations
for every new value of ¢,. However, the validity of their
method is limited to the case of high dielectric constants.
In fact, they point out [17] that comparison with a dielec-
tric sphere shows the accuracy to be, for the lowest mode
and €, =100, of the order of 1 percent for the resonant
frequency and 10 percent for the Q value. For €, = 35, the
accuracies worsened by a factor of the order of two.
Although their method can derive more accurate results for
the complex resonant frequency by consideration of high-
order correction terms in 1/ \/z , its treatment becomes
very complicated.

In this paper, we present a new analytical method which
analyzes accurately and easily the complex resonant
frequency of an open dielectric pillbox resonator without a
limit on the dielectric constant ¢,. This method expands the
fields into a series of the solutions of the Helmholtz
equation in spherical coordinates. In practice, however,
such an infinite expansion requires truncation in a finite
number of terms, and the boundary condition is treated in
least-squares sense [18]. The analytical approach presented
here is accurate in the sense that the resonant frequency
and the intrinsic Q values due to radiation loss converge to
the exact values as the number of terms in the truncated
series is increased.

II. ANALYSIS

Fig. 1 shows the geometry of an isolated dielectric pill-
box resonator, for which the radius is g, the thickness is 25,
and the relative dielectric constant is €,. The dielectric
material is assumed to be isotropic and lossless throughout
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this paper. The major difficult in the analysis of this type
of dielectric resonator lies in treating the irregular boundary
of the structure which does not coincide with separable
geometry. We expand the fields in region 1 and region 2 in
terms of solutions to the Helmholtz equation in the spheri-
cal coordinate system (r, 8, @) obtained by separation of
variables. Using the scalar potentials y,;, and ¢,, (i =1,2),
the fields of a resonator can be expressed as follows [19]:
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n
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In these expressions, 4,; and A,; are modal expansion
coefficients to be determined, ¢, is an arbitrary phase
angle, and k; is the wavenumber in the region i. P,"(cos8)
is the first kind associated Legendre function of order n, m
and F, ., ,(k,r) is given by

Jn+1/2(k1r)’
Hrﬁ—)l/Z(k2r)a

for region 1

Fp(kir) = for region 2

Here, J, ., ,, and H®, 2 are the first kind of Bessel func-
tion and the second kind of Hankel function of order
n+1/2, respectively.

The characteristic angular resonant frequency £ (com-
plex value) is determined by considering the boundary
condition on the resonator surface, thatis, n X(E; —E,)=0
and n X(H, —H,)=0 (» is the unit vector normal to the
surface). However, as mentioned before, the infinite series
in (2) should be truncated to a finite number of terms
n= N for practical calculations. Such approximated fields
never satisfy the above type of boundary condition. We
therefore fit the approximated fields to this boundary
condition in the sense of least-squares [18]. For this pur-
pose, we introduce the mean-square error E in the boundary
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Fig. 2. Boundary contour I on the r-f plane at an arbitrary ¢ coordi-
nate.

region 2

condition, defined by the following equation:
E= [{inX (€, ~E,) + Z2|n X (H, ~H,)[*} s (4)

where Z, an arbitrary impedance parameter, is not uniquely
defined, and the intrinsic impedance of the region 1, Z,
=1 /€, , is used as Z in the following calculations. Here,
the surface integral should be performed on the whole
surface of resonator. However, if the geometry of the
resonator has axial symmetry with respect to the Z axis,
the above-mentioned surface integral can be reduced to the
following line integral:

E=[(Eq—Eol+Z0M,~H ) d.  (5)
Here, I" denotes the boundary contour on the r — 8 plane
at an arbitrary ¢ coordinate, as shown in Fig. 2, and
E,.H, (i=1,2) denote the field components tangential to
T'. After substituting (1)-(3) into (5) and performing the
integration numerically, we obtain error E as a function of
both the modal coefficients and the angular frequency w.
The characteristic angular resonant frequency £ is then
obtained by means of the Ritz—Galerkin variational ap-
proach. We minimize E with respect to the above unknown
variables, and obtain £ by the same procedure as described
in [18].

As a result, the characteristic angular resonant frequency
for a mode is found as the complex quantity @ = Q, + jQ,,
(2, > 0, 2, > 0), which leads to both the resonant frequency
f, and the intrinsic Q value Q,, due to radiation loss. These
are given explicitly by

Lo =18127 Q,=1[9/2Q,.

I

Since the pillbox resonator considered here has a plane
of symmetry with respect to the r — ¢ plane at 8§ = 7/2,
symmetric and antisymmetric modes to this plane can exist
independently. Then, the » — ¢ plane at § = 7/2 can be
replaced with a magnetic wall without affecting the field
distribution about which the E_-component is symmetric
(or H,-component is antisymmetric). Similarly, if E is
antisymmetric (or H, is symmetric), an electric wall re-

(6)

NUMERICAL RESULTS
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Fig. 3. Comparison of the numerical results for the TE,; mode be-

tween the present method and different methods. (a) Normalized
resonant frequency. (b) Intrinsic Q value.

places that plane. Then, it is enough to consider only the
boundary contour in the first quadrant for the integral
contour of (5) if we utilize the following relation of the first
kind associated Legendre function P,"(cos6) at 6 = 7/2:

,,, 1D (g+2m -1, =0,2,4,- -
Pm+q(0)= ( ) (q " ) 7 <
0, g=13,5,---
(7)
where
1, s=-1,0
s!‘: S(S_Z)"' '3‘1, S=153’55.“ . (8)
s(s=2)-- 4.2, 5=2,4,6, -

Now, for the case of m =0, the field components ex-
pressed by (1) and (2) split into two independent groups of
(H,,Hy, E,) and (E,, E,4, H,). The former group ex-
pressed by ¢,, only become TE modes in the sense of
E, =0, while the latter expressed by ¢,; only become TM
modes in the sense of H, = 0. Such ¢-independent modes
are extensively used in most practical applications, and we
hereafter investigate such modes only.

First, we compute the complex resonant frequency of the
g-independent TE,; model (m =0). Table I shows the
calculated results for different numbers N of expansion
terms in (2) in order to investigate the convergence of both
Jo and Q,. These calculations are performed for the struc-
ture with ¢, = 35, 88, and b/a = 1. It is clear from this table
that both the normalized resonant frequency kya and the
intrinsic Q value Q, due to radiation loss almost converge
for N > 5. Also, in Fig. 3(a) and (b), k,a and Q, calculated
for N =7 are compared with those obtained by different
methods. As seen in Fig. 3(a), the resonant frequency
calculated by the present method agrees very well with
those by Konishi’s method [11], which gives agreement
with experimental results to within 1 percent. Van Bladel’s
method, indicated by the dashed line, gives satisfactory
results for the resonant frequency in case of €, = 88, but its
accuracy becomes worse for €, = 35 because the magnitude

TABLE I
NORMALIZED RESONANT FREQUENCIES AND INTRINSIC Q VALUES
CALCULATED FOR THE DIFFERENT NUMBER N OF THE

EXPANSION TERMS
bla=1.0
N €r=35 Er=88
ke Qo Ko Q Qo
1} 0474 [0.443x10%°] 0.304 [0 156x10°
2} 0.473 [0.433x10%] 0.303 |0 152x10°
3] 0.470 |0.401x10%] 0.300 [0.140x10°
4} 0469 |0.400x10%] 0.299 |0.139x10°
5§ 0467 |0.395x10%] 0299 |0.138x10°
6] 0467 |0.395x10%] 0.298 |0.138x10°
7] 0.467 |0.393x10%] 0.298 |0.137x10°
8| 0467 |0.393x10%] 0.298 [0.137x103

of the correction term to the dominant one is proportional
to 1/ \/Z . Qp is compared with those by Van Bladel’s
method in Fig. 3(b), and his results are found to be slightly
lower than our results. This discrepancy may be caused by
the same reason as mentioned above. In fact, this effect
becomes more noticeable in Fig. 4(a) and (b) which shows
koa and Q, as a function of the dielectric constant ¢,. The
solid lines indicate the present results and the dashed lines
indicate Van Bladel’s results. It is obvious from these
figures that his results approach our results with increasing
€,, but the accuracy is poorer when e, is lower.

We have discussed so far the numerical results for the
TE;s mode. We next investigate another g-independent
mode, i.e., the TM;;5 mode. Fig. 5(a) and (b) show k,a and
Q, calculated for N =7, where the solid lines indicate the
results by the present method and the cross marks indicate
Van Bladel’s results. Unlike the TE; mode case, agree-
ment between both methods is very good, even for lower e, .
This feature can be understood from [15], since, when Van
Bladel’s method is followed for calculations of the TM,,
mode, the first correction term in the asymptotic expansion
is of order 1/¢,, instead of order 1/ ‘/Z in the case of the
TE,; mode. Hence, his method gives more accurate re-
sults, especially for Q,, for the TM,; mode than it does
for the TE,s mode.
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Fig. 4. Resonant characteristics of the TE,; mode as a function of the
dielectric constant €,. (a) Normalized resonant frequency. (b) Intrinsic

Q value.
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Fig. 5. Resonant characteristics of the TM,; mode as a function of the
dielectric constant ¢,. (a) Normalized resonant frequency. (b) Intrinsic

Q value.

Finally, in case of m = 0, the resonant modes become
hybrid ones. For such modes, both ,, and ¢,; must be
taken into account, so that the number of unknown coeffi-
cients to be determined becomes twice as much as that in
case of m = 0. This point, however, does not cause any dif-
ficulty in calculations in the present method. A succeeding
paper will present numerical discussions about important
hybrid modes, as well as the experimental investigations.

IV. ConcLusioN

A new analytical method has been presented for calcu-
lating accurately the complex resonant frequency of an
open dielectric pillbox resonator. The numerical discussion
is presented for the TE;,; and the TM,; modes, and the
accuracy of the present method is confirmed with respect

to both good convergence of calculations and comparison
with previously published approximate methods. This
method is based on the Rayleigh expansion theorem in
which the approximate fields, expanded in the solution of
the Helmboltz equation in the spherical coordinate system,
satisfy the boundary conditions in the least-squares sense.
Hence, the uniform convergence in the sequence of the
truncated modal expansions such as in (2) can be assured
mathematically [20]. In actual numerical calculations, how-
ever, one cannot always obtain precise solutions, in partic-
ular, for the problem with edge-shaped boundaries, though
the method is complete in theory. This difficulty is due
mainly to the slow convergence. Paying attention will be
indeed necessary on this point even in the present problem,
but special care is not taken into account; nevertheless a
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reasonable convergence is obtained in calculations as seen
in Table I. Readers will find the detailed documents about
the convergence and the analytical property of the Rayleigh
expansions in [21] and [22].
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