

On the Complex Resonant Frequency of Open Dielectric Resonators

MIKIO TSUJI, MEMBER, IEEE, HIROSHI SHIGESAWA, MEMBER IEEE, AND KEI TAKIYAMA, MEMBER, IEEE

Abstract—An analytical method is presented for calculating accurately the complex resonant frequency of dielectric pillbox resonators. In this method, an approximated field of the resonator is expanded into a truncated series of solutions of the Helmholtz equation in the spherical coordinates, and the boundary condition on the resonator surface is treated in the least-squares sense. The resonant frequency and the intrinsic Q value due to radiation loss are obtained in the form of approximation converging to the exact values. Numerical results are compared with previously published calculations, which show that the present method is a relatively simple and effective one.

I. INTRODUCTION

Dielectric pillbox resonators have found many practical applications, particularly in the spectral range from microwave to short millimeter-wave frequencies [1]–[7]. As far as the resonant frequency is concerned, the analyses for such a resonator have been performed by using several approximate methods, such as a magnetic wall model [7]–[10], a variational model [11], a dielectric waveguide model [12], [13], and a mixed model [14]. The method based on a magnetic wall model typically gives rise to numerical values smaller than experimental ones by about 10 percent, whereas the variational method of Konishi *et al.* [11] shows agreement with experimental results within 1 percent. On the other hand, Itoh *et al.* [12] have shown that the dielectric waveguide model agrees closely with Konishi's method, and also Garault *et al.* [14] have shown that a mixture of the magnetic wall and dielectric waveguide models can predict the resonant frequency to within less than 1-percent error. However, these approximate methods give no information about the radiation loss which always exists in dielectric resonators of the open type. It is expected that this kind of resonator will increase in use, particularly in the millimeter-wave region. Hence, accurate information about the intrinsic Q value due to radiation loss as well as that about the resonant frequency becomes important.

One effective approach to solve this problem has been presented by Van Bladel *et al.* [15]–[17]. They have analyzed an open dielectric resonator by the asymptotic expansion method in which the fields are expanded in powers of the reciprocal of refractive index $1/\sqrt{\epsilon_r}$. They performed calculations by considering only the first-order correction in $1/\sqrt{\epsilon_r}$.

Manuscript received August 6, 1982; revised December 22, 1982.

The authors are with the Department of Electronics, Doshisha University, Kyoto, 602 Japan.

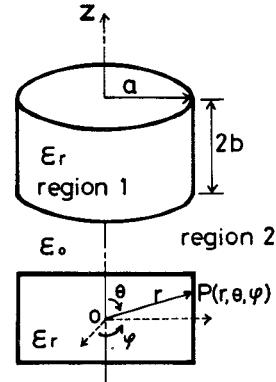


Fig. 1. Dielectric pillbox resonator and spherical coordinate system.

In this case, their method can avoid repeating calculations for every new value of ϵ_r . However, the validity of their method is limited to the case of high dielectric constants. In fact, they point out [17] that comparison with a dielectric sphere shows the accuracy to be, for the lowest mode and $\epsilon_r = 100$, of the order of 1 percent for the resonant frequency and 10 percent for the Q value. For $\epsilon_r = 35$, the accuracies worsened by a factor of the order of two. Although their method can derive more accurate results for the complex resonant frequency by consideration of high-order correction terms in $1/\sqrt{\epsilon_r}$, its treatment becomes very complicated.

In this paper, we present a new analytical method which analyzes accurately and easily the complex resonant frequency of an open dielectric pillbox resonator without a limit on the dielectric constant ϵ_r . This method expands the fields into a series of the solutions of the Helmholtz equation in spherical coordinates. In practice, however, such an infinite expansion requires truncation in a finite number of terms, and the boundary condition is treated in least-squares sense [18]. The analytical approach presented here is accurate in the sense that the resonant frequency and the intrinsic Q values due to radiation loss converge to the exact values as the number of terms in the truncated series is increased.

II. ANALYSIS

Fig. 1 shows the geometry of an isolated dielectric pillbox resonator, for which the radius is a , the thickness is $2b$, and the relative dielectric constant is ϵ_r . The dielectric material is assumed to be isotropic and lossless throughout

this paper. The major difficult in the analysis of this type of dielectric resonator lies in treating the irregular boundary of the structure which does not coincide with separable geometry. We expand the fields in region 1 and region 2 in terms of solutions to the Helmholtz equation in the spherical coordinate system (r, θ, φ) obtained by separation of variables. Using the scalar potentials ψ_{ri} and $\bar{\psi}_{ri}$ ($i=1, 2$), the fields of a resonator can be expressed as follows [19]:

$$\left. \begin{aligned} E_{ri} &= \left(\frac{\partial^2}{\partial r^2} + k_i^2 \right) \psi_{ri} \\ E_{\theta i} &= \frac{1}{r} \frac{\partial^2 \psi_{ri}}{\partial r \partial \theta} - \frac{j\omega \mu_0}{r \sin \theta} \frac{\partial \bar{\psi}_{ri}}{\partial \varphi} \\ E_{\varphi i} &= \frac{1}{r \sin \theta} \frac{\partial^2 \psi_{ri}}{\partial r \partial \varphi} + \frac{j\omega \mu_0}{r} \frac{\partial \bar{\psi}_{ri}}{\partial \theta} \\ H_{ri} &= \left(\frac{\partial^2}{\partial r^2} + k_i^2 \right) \bar{\psi}_{ri} \\ H_{\theta i} &= \frac{j\omega \epsilon_0 \epsilon_{ri}}{r \sin \theta} \frac{\partial \psi_{ri}}{\partial \varphi} + \frac{1}{r} \frac{\partial^2 \bar{\psi}_{ri}}{\partial r \partial \theta} \\ H_{\varphi i} &= -\frac{j\omega \epsilon_0 \epsilon_{ri}}{r} \frac{\partial \psi_{ri}}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial^2 \bar{\psi}_{ri}}{\partial r \partial \varphi} \end{aligned} \right\} \quad (1)$$

where

$$\left. \begin{aligned} \psi_{ri} &= \cos(m\varphi + \varphi_0) \sum_n A_{ni} \sqrt{k_i r} F_{n+1/2}(k_i r) P_n^m(\cos \theta) e^{j\omega t} \\ \bar{\psi}_{ri} &= \sin(m\varphi + \varphi_0) \sum_n \bar{A}_{ni} \sqrt{k_i r} F_{n+1/2}(k_i r) P_n^m(\cos \theta) e^{j\omega t} \end{aligned} \right\} \quad (i=1, 2). \quad (2)$$

In these expressions, A_{ni} and \bar{A}_{ni} are modal expansion coefficients to be determined, φ_0 is an arbitrary phase angle, and k_i is the wavenumber in the region i . $P_n^m(\cos \theta)$ is the first kind associated Legendre function of order n , m and $F_{n+1/2}(k_i r)$ is given by

$$F_{n+1/2}(k_i r) = \begin{cases} J_{n+1/2}(k_1 r), & \text{for region 1} \\ H_{n+1/2}^{(2)}(k_2 r), & \text{for region 2} \end{cases} \quad (3)$$

Here, $J_{n+1/2}$ and $H_{n+1/2}^{(2)}$ are the first kind of Bessel function and the second kind of Hankel function of order $n+1/2$, respectively.

The characteristic angular resonant frequency Ω (complex value) is determined by considering the boundary condition on the resonator surface, that is, $n \times (\mathbf{E}_1 - \mathbf{E}_2) = 0$ and $n \times (\mathbf{H}_1 - \mathbf{H}_2) = 0$ (n is the unit vector normal to the surface). However, as mentioned before, the infinite series in (2) should be truncated to a finite number of terms $n = N$ for practical calculations. Such approximated fields never satisfy the above type of boundary condition. We therefore fit the approximated fields to this boundary condition in the sense of least-squares [18]. For this purpose, we introduce the mean-square error E in the boundary

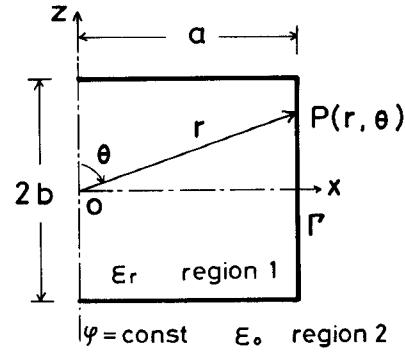


Fig. 2. Boundary contour Γ on the r - θ plane at an arbitrary φ coordinate.

condition, defined by the following equation:

$$E = \int_s \{ (n \times (\mathbf{E}_1 - \mathbf{E}_2))^2 + Z^2 |n \times (\mathbf{H}_1 - \mathbf{H}_2)|^2 \} ds \quad (4)$$

where Z , an arbitrary impedance parameter, is not uniquely defined, and the intrinsic impedance of the region 1, $Z_1 = \sqrt{\mu/\epsilon_0 \epsilon_r}$, is used as Z in the following calculations. Here, the surface integral should be performed on the whole surface of resonator. However, if the geometry of the resonator has axial symmetry with respect to the Z axis, the above-mentioned surface integral can be reduced to the following line integral:

$$E = \int_{\Gamma} \{ |\mathbf{E}_{t1} - \mathbf{E}_{t2}|^2 + Z_1^2 |\mathbf{H}_{t1} - \mathbf{H}_{t2}|^2 \} dl. \quad (5)$$

Here, Γ denotes the boundary contour on the r - θ plane at an arbitrary φ coordinate, as shown in Fig. 2, and $\mathbf{E}_{ti}, \mathbf{H}_{ti}$ ($i=1, 2$) denote the field components tangential to Γ . After substituting (1)–(3) into (5) and performing the integration numerically, we obtain error E as a function of both the modal coefficients and the angular frequency ω . The characteristic angular resonant frequency Ω is then obtained by means of the Ritz–Galerkin variational approach. We minimize E with respect to the above unknown variables, and obtain Ω by the same procedure as described in [18].

As a result, the characteristic angular resonant frequency for a mode is found as the complex quantity $\Omega = \Omega_r + j\Omega_i$, ($\Omega_r > 0, \Omega_i > 0$), which leads to both the resonant frequency f_0 and the intrinsic Q value Q_0 due to radiation loss. These are given explicitly by

$$f_0 = |\Omega|/2\pi \quad Q_0 = |\Omega|/2\Omega_i. \quad (6)$$

III. NUMERICAL RESULTS

Since the pillbox resonator considered here has a plane of symmetry with respect to the r - φ plane at $\theta = \pi/2$, symmetric and antisymmetric modes to this plane can exist independently. Then, the r - φ plane at $\theta = \pi/2$ can be replaced with a magnetic wall without affecting the field distribution about which the E_{φ} -component is symmetric (or H_{φ} -component is antisymmetric). Similarly, if E_{φ} is antisymmetric (or H_{φ} is symmetric), an electric wall re-

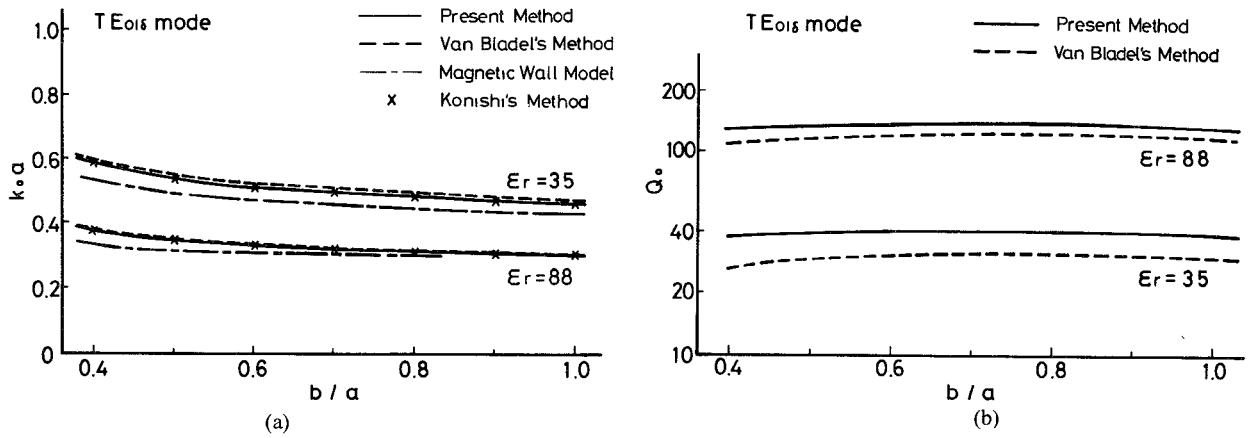


Fig. 3. Comparison of the numerical results for the TE_{018} mode between the present method and different methods. (a) Normalized resonant frequency. (b) Intrinsic Q value.

places that plane. Then, it is enough to consider only the boundary contour in the first quadrant for the integral contour of (5) if we utilize the following relation of the first kind associated Legendre function $P_n^m(\cos \theta)$ at $\theta = \pi/2$:

$$P_{m+q}^m(0) = \begin{cases} (-1)^{q/2} \cdot (q+2m-1)!! & q = 0, 2, 4, \dots \\ 0 & q = 1, 3, 5, \dots \end{cases} \quad (7)$$

where

$$s!! = \begin{cases} 1, & s = -1, 0 \\ s(s-2) \cdots 3 \cdot 1, & s = 1, 3, 5, \dots \\ s(s-2) \cdots 4 \cdot 2, & s = 2, 4, 6, \dots \end{cases} \quad (8)$$

Now, for the case of $m=0$, the field components expressed by (1) and (2) split into two independent groups of (H_r, H_θ, E_ϕ) and (E_r, E_θ, H_ϕ) . The former group expressed by ψ_r only become TE modes in the sense of $E_z = 0$, while the latter expressed by ψ_r only become TM modes in the sense of $H_z = 0$. Such ϕ -independent modes are extensively used in most practical applications, and we hereafter investigate such modes only.

First, we compute the complex resonant frequency of the ϕ -independent TE_{018} mode ($m=0$). Table I shows the calculated results for different numbers N of expansion terms in (2) in order to investigate the convergence of both f_0 and Q_0 . These calculations are performed for the structure with $\epsilon_r = 35, 88$, and $b/a = 1$. It is clear from this table that both the normalized resonant frequency k_0a and the intrinsic Q value Q_0 due to radiation loss almost converge for $N \geq 5$. Also, in Fig. 3(a) and (b), k_0a and Q_0 calculated for $N = 7$ are compared with those obtained by different methods. As seen in Fig. 3(a), the resonant frequency calculated by the present method agrees very well with those by Konishi's method [11], which gives agreement with experimental results to within 1 percent. Van Bladel's method, indicated by the dashed line, gives satisfactory results for the resonant frequency in case of $\epsilon_r = 88$, but its accuracy becomes worse for $\epsilon_r = 35$ because the magnitude

TABLE I
NORMALIZED RESONANT FREQUENCIES AND INTRINSIC Q VALUES
CALCULATED FOR THE DIFFERENT NUMBER N OF THE
EXPANSION TERMS

N	$b/a = 1.0$			
	$\epsilon_r = 35$		$\epsilon_r = 88$	
	k_0a	Q_0	k_0a	Q_0
1	0.474	0.443×10^2	0.304	0.156×10^3
2	0.473	0.433×10^2	0.303	0.152×10^3
3	0.470	0.401×10^2	0.300	0.140×10^3
4	0.469	0.400×10^2	0.299	0.139×10^3
5	0.467	0.395×10^2	0.299	0.138×10^3
6	0.467	0.395×10^2	0.298	0.138×10^3
7	0.467	0.393×10^2	0.298	0.137×10^3
8	0.467	0.393×10^2	0.298	0.137×10^3

of the correction term to the dominant one is proportional to $1/\sqrt{\epsilon_r}$. Q_0 is compared with those by Van Bladel's method in Fig. 3(b), and his results are found to be slightly lower than our results. This discrepancy may be caused by the same reason as mentioned above. In fact, this effect becomes more noticeable in Fig. 4(a) and (b) which shows k_0a and Q_0 as a function of the dielectric constant ϵ_r . The solid lines indicate the present results and the dashed lines indicate Van Bladel's results. It is obvious from these figures that his results approach our results with increasing ϵ_r , but the accuracy is poorer when ϵ_r is lower.

We have discussed so far the numerical results for the TE_{018} mode. We next investigate another ϕ -independent mode, i.e., the TM_{018} mode. Fig. 5(a) and (b) show k_0a and Q_0 calculated for $N = 7$, where the solid lines indicate the results by the present method and the cross marks indicate Van Bladel's results. Unlike the TE_{018} mode case, agreement between both methods is very good, even for lower ϵ_r . This feature can be understood from [15], since, when Van Bladel's method is followed for calculations of the TM_{018} mode, the first correction term in the asymptotic expansion is of order $1/\epsilon_r$, instead of $1/\sqrt{\epsilon_r}$ in the case of the TE_{018} mode. Hence, his method gives more accurate results, especially for Q_0 , for the TM_{018} mode than it does for the TE_{018} mode.

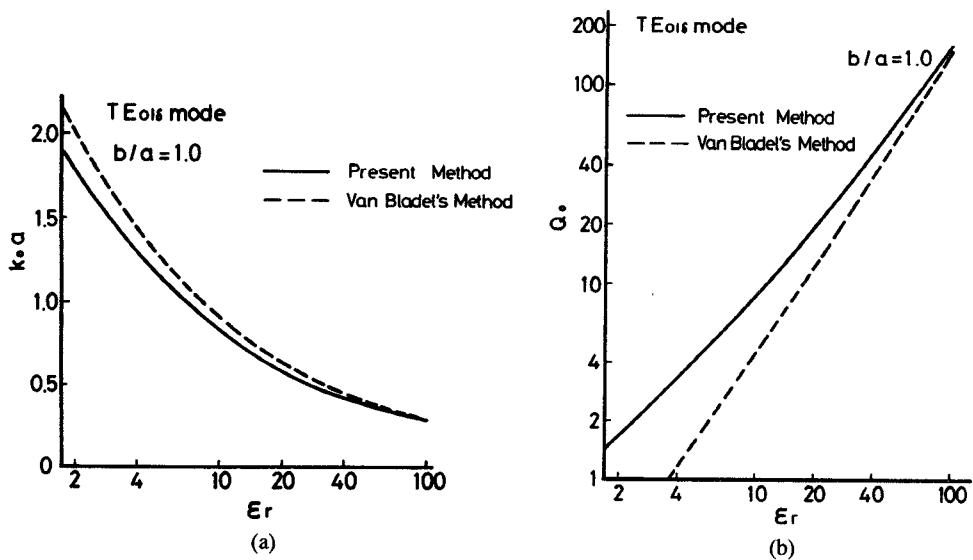


Fig. 4. Resonant characteristics of the TE_{01s} mode as a function of the dielectric constant ϵ_r . (a) Normalized resonant frequency. (b) Intrinsic Q value.

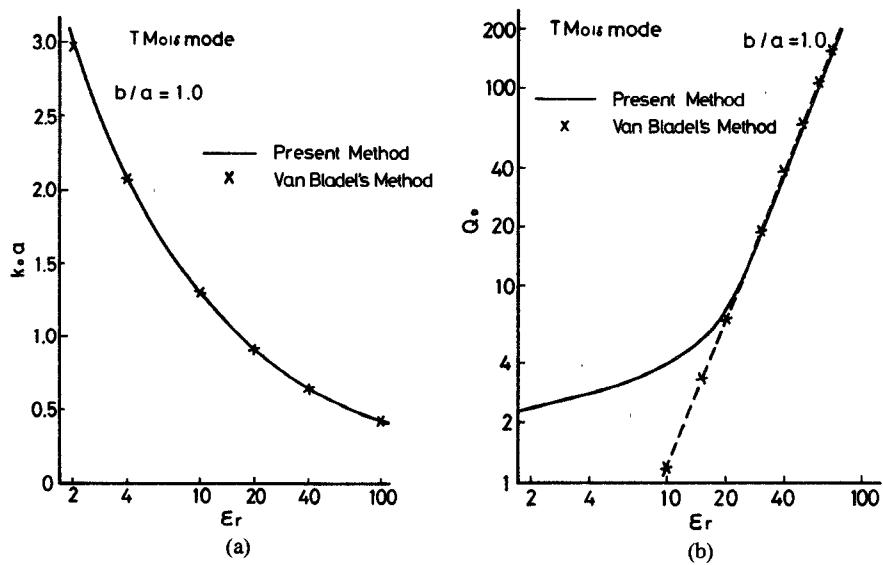


Fig. 5. Resonant characteristics of the TM_{01s} mode as a function of the dielectric constant ϵ_r . (a) Normalized resonant frequency. (b) Intrinsic Q value.

Finally, in case of $m \neq 0$, the resonant modes become hybrid ones. For such modes, both ψ_r and $\bar{\psi}_r$ must be taken into account, so that the number of unknown coefficients to be determined becomes twice as much as that in case of $m = 0$. This point, however, does not cause any difficulty in calculations in the present method. A succeeding paper will present numerical discussions about important hybrid modes, as well as the experimental investigations.

IV. CONCLUSION

A new analytical method has been presented for calculating accurately the complex resonant frequency of an open dielectric pillbox resonator. The numerical discussion is presented for the TE_{01s} and the TM_{01s} modes, and the accuracy of the present method is confirmed with respect

to both good convergence of calculations and comparison with previously published approximate methods. This method is based on the Rayleigh expansion theorem in which the approximate fields, expanded in the solution of the Helmholtz equation in the spherical coordinate system, satisfy the boundary conditions in the least-squares sense. Hence, the uniform convergence in the sequence of the truncated modal expansions such as in (2) can be assured mathematically [20]. In actual numerical calculations, however, one cannot always obtain precise solutions, in particular, for the problem with edge-shaped boundaries, though the method is complete in theory. This difficulty is due mainly to the slow convergence. Paying attention will be indeed necessary on this point even in the present problem, but special care is not taken into account; nevertheless a

reasonable convergence is obtained in calculations as seen in Table I. Readers will find the detailed documents about the convergence and the analytical property of the Rayleigh expansions in [21] and [22].

REFERENCES

- [1] D. J. Masse and R. A. Pucel, "A temperature stable bandpass filter using dielectric resonators," *Proc. IEEE*, vol. 60, pp. 730-731, June 1972.
- [2] E. Fox, "Temperature stable low-loss microwave filters using dielectric resonators," *Electron. Lett.*, vol. 8, pp. 582-583, Nov. 1972.
- [3] W. Harrison, "A miniature high Q bandpass filter employing dielectric resonators," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-16, pp. 218-227, Apr. 1968.
- [4] T. D. Iveland, "Dielectric resonators filters for applications in microwave integrated circuits," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-19, pp. 643-652, July 1971.
- [5] M. A. Gerdine, "A frequency stabilized microwave band-rejection filter using high dielectric constant resonators," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-17, pp. 354-359, July 1969.
- [6] A. Karp, H. J. Shaw, and D. K. Winslow, "Circuits properties of microwave dielectric resonators," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-16, pp. 818-828, Oct. 1968.
- [7] S. B. Cohn, "Microwave bandpass filters containing high Q dielectric resonators," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-16, pp. 210-217, Apr. 1968.
- [8] H. M. Schlicke, "Quasi-degenerated modes in high ϵ dielectric cavities," *J. Appl. Phys.*, vol. 24, pp. 187-191, Feb. 1953.
- [9] H. Y. Yee, "Natural resonant frequencies of microwave dielectric resonators," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-13, p. 256, Mar. 1965.
- [10] A. Okaya and L. F. Barash, "The dielectric microwave resonators," *Proc. IRE*, vol. 50, pp. 2081-2092, Oct. 1962.
- [11] Y. Konishi, N. Hoshino, and Y. Utsumi, "Resonant frequency of a TE_{018} dielectric resonator," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-24, pp. 112-114, Feb. 1976.
- [12] T. Itoh and R. Rudokas, "New method for computing the resonant frequencies of dielectric resonators," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-25, pp. 52-54, Jan. 1977.
- [13] M. W. Pospieszalski, "Cylindrical dielectric resonators and their applications in the TEM line microwave circuits," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-27, pp. 233-238, Mar. 1979.
- [14] Y. Garault and P. Guillot, "Higher accuracy for the resonance frequencies of dielectric resonators," *Electron. Lett.*, vol. 12, pp. 475-476, Sept. 1976.
- [15] J. Van Bladel, "On the resonances of a dielectric resonator of very high permittivity," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-23, pp. 199-208, Feb. 1975.
- [16] M. Verplanken and J. Van Bladel, "The electric-dipole resonances of ring resonators of very high permittivity," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-24, pp. 108-112, Feb. 1976.
- [17] M. Verplanken and J. Van Bladel, "The magnetic-dipole resonances of ring resonators of very high permittivity," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-27, pp. 328-333, Apr. 1979.
- [18] M. Tsuji, S. Suhara, H. Shigesawa, and K. Takiyama, "Submillimeter guided-wave experiments with dielectric rib waveguides," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-29, pp. 547-552, June 1981.
- [19] R. F. Harrington, *Time Harmonic Electromagnetic Fields*. New York: McGraw-Hill, 1961, ch. 6.
- [20] K. Yasuura, "A view of numerical methods in diffraction problems," in *Progress in Radio Science 1966-1969*. Brussels: URSI, 1971, pp. 257-270.
- [21] H. Ikuno and K. Yasuura, "Numerical calculation of the scattered field from a periodic deformed cylinder using the smoothing process on the mode-matching method," *Radio Sci.*, vol. 6, pp. 937-946, June 1978.
- [22] Y. Okuno and K. Yasuura, "Numerical algorithm based on the mode-matching method with singular-smoothing procedure for analyzing edge-type scattering problems," *IEEE Trans. Antennas Propagat.*, vol. AP-30, pp. 580-587, July 1982.

Mikio Tsuji (S'77-M'82) was born in Kyoto, Japan, on September 10, 1953. He received the B.S. and M.S. degrees in electrical engineering from Doshisha University, Kyoto, Japan, in 1976 and 1978, respectively.

Since 1981, he has been a Research Assistant of the Faculty of Engineering at Doshisha University. His research activities have been concerned with submillimeter-wave and microwave transmission lines and devices of open structures.

Mr. Tsuji is a member of the Institute of Electronics and Communication Engineers (IECE) of Japan.

Hiroshi Shigesawa (S'62-M'63) was born in Hyogo, Japan, on January 5, 1939. He received the B.S., M.S., and Ph.D. degrees in electrical engineering from Doshisha University, Kyoto, Japan, in 1961, 1963, and 1969, respectively.

Since 1963, he has been with Doshisha University. From 1979 to 1980, he was a Visiting Scholar at Microwave Research Institute, Polytechnic Institute of New York, Brooklyn, NY. Currently, he is a Professor at the Faculty of Engineering, Doshisha University. His present research activities involve microwave and submillimeter-wave transmission lines and devices of open structure, fiber optics, and scattering problems of electromagnetic waves.

Dr. Shigesawa is a member of the Institute of Electronics and Communication Engineers (IECE) of Japan, the Japan Society of Applied Physics, and the Optical Society of America (OSA).

Kei Takiyama (M'58) was born in Osaka, Japan, on October 20, 1920. He received the B.S. and Ph.D. degrees in electrical engineering from Kyoto University, Kyoto, Japan, in 1942 and 1955, respectively.

Since 1954, he has been a Professor of Electronic Engineering at Doshisha University, Kyoto, Japan, where he carried out research in the fields of microwave transmission lines and optical engineering. From 1957 to 1958, he was a Fulbright Scholar and a Research Associate at the Microwave Research Institute, Polytechnic Institute of Brooklyn, New York.

Dr. Takiyama is a member of the Institute of Electronics and Communication Engineers (IECE) of Japan, the Institute of Electrical Engineers of Japan, and the Optical Society of America (OSA).