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Abstract —An analytical method is presented for calculating accurately

the complex resonant frequency of dielectric pillbox resonators. In this

method, an approximated field of the resonator is expanded into a trms-

cated series of solutions of the Hehnholtz equation in the sphericaf

coordinates, and the boundary condhion on the resonator surface is treated

in the least-squares sense. The resonant frequency and the intrinsic Q vafue

due to radiation loss are obtained in the form of approximation converging
to the exact vahses. Numericaf results are compared with previously

published calculations, which show that the present method is a relatively

simple and effective one.

I. INTRODUCTION

D IELECTRIC PILLBOX resonators have found many

practical applications, particularly in the spectral range

from microwave to short millimeter-wave frequencies

[ 1]-[7]. As far as the resonant frequency is concerned, the

analyses for such a resonator have been performed by

using several approximate methods, such as a magnetic

wall model [7]–[ 10], a variational model [11], a dielectric

waveguide model [12], [13], and a mixed model [14]. The

method based on a magnetic wall model typically gives rise

to numerical values smaller than experimental ones by

about 10 percent, whereas the variational method of

Konishi et al. [11] shows agreement with experimental

results within 1 percent. On the other hand, Itoh et a/. [12]

have shown that the dielectric waveguide model agrees

closely with Konishi’s method, and also Garault et al. [14]

have shown that a mixture of the magnetic wall and

dielectric waveguide models can predict the resonant

frequency to within less than 1-percent error. However,

these approximate methods give no information about the

radiation loss which always exists in dielectric resonators

of the open type. It is expected that this kind of resonator

will increase in use, particularly in the millimeter-wave

region. Hence, accurate information about the intrinsic Q

value due to radiation loss as well as that about the

resonant frequency becomes important.

One effective approach to solve this problem has been
presented by Van Bladel et al. [ 15]–[ 17]. They have analyzed

an open dielectric resonator by the asymptotic expansion

method in which the fields are expanded in powers of the

reciprocal of refractive index &. They performed calcula-

tions by considering only the first-order correction in l/&.
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Fig. 1. Dielectric pillbox resonator and spherical coordinate system.

In this case, their method can avoid repeating calculations

for every new value of c,. However, the validity of their

method is limited to the case of high dielectric constants.

In fact, they point out [17] that comparison with a dielec-

tric sphere shows the accuracy to be, for the lowest mode

and c, = 100, of the order of 1 percent for the resonant

frequency and 10 percent for the Q value. For c, = 35, the

accuracies worsened by a factor of the order of two.

Although their method can derive more accurate results for

the complex resonant frequency by consideration of high-

order correction terms in 1/&, its treatment becomes

very complicated.

In this paper, we present a new analytical method which

analyzes accurately and easily the complex resonant

frequency of an open dielectric pillbox resonator without a

limit on the dielectric constant c,. This method expands the

fields into a series of the solutions of the Hehnholtz

equation in spherical coordinates. In practice, however,

such an infinite expansion requires truncation in a finite

number of terms, and the boundary condition is treated in

least-squares sense [18]. The analytical approach presented

here is accurate in the sense that the resonant frequency

and the intrinsic Q values due to radiation loss converge to

the exact values as the number of terms in the truncated

series is increased.

II. ANALYSIS

Fig. 1 shows the geometry of an isolated dielectric pill-

box resonator, for which the radius is a, the thickness is 2b,

and the relative dielectric constant is [,. The dielectric

material is assumed to be isotropic and lossless throughout
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this paper. The major difficult in the analysis of this type

of dielectric resonator lies in treating the irregular boundary

of the structure which does not coincide with separable

geometry. We expand the fields in region 1 and re~on 2 in

terms of solutions to the Helmholtz equation in the spheri-

cal coordinate system (r, 0, q) obtained by separation of

variables. Using the scalar potentials #J,i and ~,, (i= 1, 2),

the fields of a resonator can be expressed as follows [19]:

1 W, + jwoai,i
Eqi=— — ——

rsind drthp r ae

()
q,= $

} (1)

+ k; rjri

where

(2)

In these expressions, An, and A;, are modal expansion

coefficients to be determined, rpo is an arbitrary phase

angle, and k, is the wavenumber in the region i. P~m(cos O)

is the first kind associated Legendre function of order n, m

and Fn ● ,,z (kir) is given by

(.+,,2(k1r), for region 1J
F (3).+l/2(kir) = @~1z2(k2r),

for region 2”

Here, J.+ ,,2 and H(2Jn+ 1/2 are ‘he ‘irst ‘ind ‘f ‘essel ‘unc-

tion and the second kind of Hankel function of order

n + 1/2, respectively.

The characteristic angular resonant frequency O (com-

plex value) is determined by considering the boundary

condition on the resonator surface, that is; n X (E, – E z) = O

and n X (O-M~ – HI z ) = O (n is the unit vector normal to the

surface). However, as mentioned before, the infinite series

in (2) should be truncated to a finite number of terms
n = N for practical calculations. Such approximated fields

never satisfy the above type of boundary condition. We

therefore fit the approximated fields to this boundary

condition in the sense of least-squares [18]. For this pur-

pose, we introduce the mean-square error E in the boundary

‘p- a-l

wIr P(r, e)
‘e

2b ,0 -—-—-—- x

1! r

l~=const E. region 2

Fig. 2. Boundary contour r on the r-O plane at an arbitraq T coordi-
nate.

condition, defined by the following equation:

E=~{lnx (IE1-E2)12 +Z21nx(Hl, -H2)12}ds (4)
s

where Z, an arbitrary impedance parameter, is not uniquely

defined, and the intrinsic impedance of the region 1, 21

= I=, is used as Zin the following calculations. Here,

the surface integral should be performed on the whole

surface of resonator. However, if the geometry of the

resonator has axial symmetry with respect to the Z axis,

the above-mentioned surface integral can be reduced to the

following line integral:

Here, 17 denotes the boundary contour on the r – 8 plane

at an arbitrary q coordinate, as shown in Fig. 2, and

E ~1,O-O~1(i= 1, 2) denote the field components tangential to

17. After substituting (l)–(3) into (5) and performing the

integration numerically, we obtain error E as a function of

both the modal coefficients and the angular frequency u.

The characteristic angular resonant frequency Q is then

obtained by means of the Ritz-Galerkin variational ap-

proach. We minimize E with respect to the above unknown

variables, and obtain O by the same procedure as described

in [18].

As a result, the characteristic angular resonant frequency

for a mode is found as the complex quantity !J = $?, + jfl,,

(!2, >0,0, > O), which leads to both the resonant frequency

~. and the intrinsic Q value Q. due to radiation loss. These

are given explicitly by

fo = lW277 Q.= lQ1/20i. (6)

III. NUMERICAL RESULTS

Since the pillbox resonator considered here has a plane

of symmetry with respect to the r – q plane at O = r/2,

symmetric and antisymrnetric modes to this plane can exist
independently. Then, the r – rp plane at O = 7/2 can be

replaced with a magnetic wall without affecting the field

distribution about which the Eq-component is symmetric

(or Hw-component is antisymmetric). Similarly, if Eq is

antisymmetric (or HW is symmetric), an electric wall re-
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Fig. 3. Comparison of the numerical results for the TE016 mode be-
tween the present method and different methods. (a) Normalized
resonant frequency. (b) Intrinsic Q value.

places that plane. Then, it is enough to consider only the

boundary contour in the first quadrant for the integral

contour of (5) if we utilize the following relation of the first

kind associated Legendre function P#(cos 0) at tJ = 7r/2:

(P:+q(())= (– 0q’2”(q+2m -l)!!, q=o,2,4, . . .

o, q=l,3,5, .-.

(7)

where

(

1, S=–l, o

s!!= S(S–2). . . 43.1, S = 1,3,5,... (8)

s(s–2). . . .4.2, s = 2,4,6,...

Now, for the case of m = O, the field components ex-

pressed by (1) and (2) split into two independent groups of

(~,, He, Eq) and (-% EO, HY). The former group ex-
pressed by ~,, only become TE modes in the sense of

E,= O, while the latter expressed by +~i only become TM

modes in the sense of Hz = O. Such q-independent modes

are extensively used in most practical applications, and we

hereafter investigate such modes only.

First, we compute the complex resonant frequency of the

q-independent TE Olo model (m = O). Table I shows the
calculated results for different numbers N of expansion

terms in (2) in order to investigate the convergence of both

~. and Qo. These calculations are performed for the struc-
ture with c, = 35, 88, and b/a = 1. It is clear from this table

that both the normalized resonant frequency /coa and the

intrinsic Q value Q. due to radiation loss almost converge

for N >5. Also, in Fig. 3(a) and (b), koa and Q. calculated

for N = 7 are compared with those obtained by different

methods. As seen in Fig. 3(a), the resonant frequency

calculated by the present method agrees very well with

those by Konishi’s method [11], which gives agreement

with experimental results to within 1 percent. Van BladeI’s

method, indicated by the dashed line, gives satisfactory

results for the resonant frequency in case of c, = 88, but its

accuracy becomes worse for t, = 35 because the magnitude

TABLE I
NORMALIZED RESONANTFREQUENCIESAND INTRINSIC Q VALUES

CALCULATEDFORTHE DIFFERENTNUMRERN OFTHE
ExPANs1014TmMs

b/a=l. O

N Er.35 Er= 80

k. a Q. k. a Q.

1 0474 o. f)43xlo2 0.304 0 1 56x103

2 0.473 0.433X102 0,303 0 1 52x103

3 0,470 0.401 X102 0.300 o.lf$o Mo3

4 0.469 O.4OOX1O* 0.299 0.1 39X103

5 0467 0.395X102 O 299 0.1 38x103

6 0,667 0.395X102 0.298 0.1 38x103

7 0,467 0.393X102 0.298 0.1 37X103

8 0.467 O.393X1O2 0.298 0.1 37X103

of the correction term to the dominant one is proportional

to l/&. Q. is compared with those by Van Bladel’s

method in Fig. 3(b), and his results are found to be slightly

lower than our results. This discrepancy may be caused by

the same reason as mentioned above. In fact, this effect

becomes more noticeable in Fig. 4(a) and (b) which shows

koa and Q. as a function of the dielectric constant c,. The

solid lines indicate the present results and the dashed lines

indicate Van Bladel’s results. It is obvious from these

figures that his results approach our results with increasing

e,, but the accuracy is poorer when c, is lower.

We have discussed so far the numerical results for the

‘TEoIa mode. we next investkate another Cp-independent
mode, i.e., the TMola mode. Fig. 5(a) and (b) show k. a and

Q. calculated for N = 7, where the solid lines indicate the

results by the present method and the cross marks indicate

Van Bladel’s results. Unlike the TE 018 mode case, agree-
ment between both methods is very good, even for lower c,.

This feature can be understood from [15], since, when Van

BladeI’s method is followed for calculations of the TM018

mode, the first correction term in the asymptotic expansion

is of order 1/c,, instead of order l/~ in the case of the

TEold mode. Hence, his method gives more accurate re-
sults, especially for Qo, for the TM016 mode than it does

for the TE018 mode.
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Fig. 4. Resonant characteristics of the TEOla mode as a function of the
dielectric constant c,. (a) Normalized resonant frequency. (b) Intrinsic
Q value.
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Fig. 5. Resonant characteristics of the TM016 mode as a function of the

dielectric constant c,. (a) Normalized resonant frequency. (b) Intrinsic
Q value.

Finally, in case of m *O, the resonant modes become

hybrid ones. For such modes, both +,, and ~,i must be

taken into account, so that the number of unknown coeffi-

cients to be determined becomes twice as much as that in

case of m = O. This point, however, does not cause any dif-

ficulty in calculations in the present method. A succeeding

paper will present numerical discussions about important

hybrid modes, as well as the experimental investigations.

IV. CONCLUSION

A new analytical method has been presented for calcu-

lating accurately the complex resonant frequency of an

open dielectric pillbox resonator. The numerical discussion

is presented for the TEO1a and the TM0,8 modes, and the

accuracy of the present method is confirmed with respect

-..

to both good convergence of calculations and comparison

with previously published approximate methods. This

method is based on the Rayleigh expansion theorem in

which the approximate fields, expanded in the solution of

the Hehrtholtz equation in the spherical coordinate system,

satisfy the boundary conditions in the least-squares sense.

Hence, the uniform convergence in the sequence of the

truncated modal expansions such as in (2) can be assured

mathematically [20]. In actual numerical calculations, how-
ever, one cannot always obtain precise solutions, in partic-

ular, for the problem with edge-shaped boundaries, though

the method is complete in theory. This difficulty is due

mainly to the slow convergence. Paying attention will be

indeed necessary on this point even in the present problem,

but special care is not taken into account; nevertheless a
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reasonable convergence is obtained in calculations as seen

in Table I. Readers will find the detailed documents about

the convergence and the analytical property of the Rayleigh

expansions in [21] and [22].
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